4(a). Line Integrals

A line integral is an expression of the form

$$
\int_{a}^{b} \vec{A} \cdot d \vec{l}
$$

where $\overrightarrow{\mathrm{A}}$ is a vector function, $d \vec{l}$ is the infinitesimal displacement vector and the integral is to be carried out along a prescribed path P from point a to point b. If the path in question forms a closed loop
 (that is, if $b=a$), put a circle on the integral sign:

$$
\oint \vec{A} \cdot d \vec{l}
$$

At each point on the path we take the dot product of \vec{A} (evaluated at that point) with the displacement $d \vec{l}$ to the next point on the path. The most familiar example of a line integral is the work done by a force \vec{F} :

$$
W=\int \vec{F} \cdot d \vec{l}
$$

Ordinarily, the value of a line integral depends critically on the particular path taken from a to b, but there is an important special class of vector functions for which the line integral is independent of the path, and is determined entirely by the end points(A force that has this property is called conservative.)

Example: Calculate the line integral of the function $\vec{A}=y^{2} \hat{x}+2 x(y+1) \hat{y}$ from the point $a=(1,1,0)$ to the point $b=(2,2,0)$, along the paths (1) and (2) as shown in figure. What is $\oint \vec{A} \cdot d \vec{l}$ for the loop that goes from a to b along (1) and returns to a along (2)?

Solution: Since $d \vec{l}=d x \hat{x}+d y \hat{y}+d z \hat{z}$. Path (1) consists of two parts. Along the "horizontal" segment $d y=d z=0$, so
(i) $d \vec{l}=d x \hat{x}, \quad y=1, \vec{A} \cdot d \vec{l}=y^{2} d x=d x$, so $\int \vec{A} \cdot d \vec{l}=\int_{1}^{2} d x=1$

On the "vertical" stretch $d x=d z=0$, so
(ii) $d \vec{l}=d y \hat{y}, \quad x=2, \vec{A} \cdot d \vec{l}=2 x(y+1) d y=4(y+1) d y$, so $\int \vec{A} \cdot d \vec{l}=4 \int_{1}^{2}(y+1) d y=10$.

By path (1), then,

$$
\int_{a}^{b} \vec{A} \cdot d \vec{l}=1+10=11
$$

Meanwhile, on path (2) $x=y, d x=d y$, and $d z=0$, so

$$
d \vec{l}=d x \hat{x}+d x \hat{y}, \quad \vec{A} \cdot d \vec{l}=x^{2} d x+2 x(x+1) d x=\left(3 x^{2}+2 x\right) d x
$$

so

$$
\int_{a}^{b} \vec{A} \cdot d \vec{l}=\int_{1}^{2}\left(3 x^{2}+2 x\right) d x=\left.\left(x^{3}+x^{2}\right)\right|_{1} ^{2}=10
$$

For the loop that goes out (1) and back (2), then,

$$
\oint \vec{A} \cdot d \vec{l}=11-10=1
$$

